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A new method for smooth interpolation and approximation of data is introduced. The 
method is based on choosing the smoothest analytical curve that approximates the data 
points. The method allows for the inclusion of additional information, such as uncertainties 
in the data and other constraints given by the general phenomenology of the experiment 
or theory. The novelty in the method, as well as its most efficient feature, is in its ability 
to obtain a good approximation, not only of the data points, but also of their first and 
higher derivatives. The method is applied to several examples. Among them we include 
function approximations and several physical experiments, such as heat capacity 
measurement and Miissbauer spectrum. Another interesting example that is treated in- 
volves a calibration of GaAs resistance thermometer. The method is extended to multi- 
dimensional spaces, and can also be applied to the calculation of numerical derivatives and 
integrals of data points. 

1. INTRODUCTION 

In many experiments in physics and other disciplines a measured quantity is a 
continuous function of some given variable. A common practice is to measure this 
function for a few values of this variable. Then the experimenter assumes that for 
intermediate values of the variable the function also attains some intermediate values 
In other words, the experimenter is interpolating for a desired value of the function. 

Although the interpolation is usually straightforward, considerable difficulties are 
encountered when one tries to extract derivatives. The reason for this is that experi- 
mental results contain errors which may contribute very significantly to the derivative 
of this function. 

There are numerous examples where derivatives of functions are required. For 
instance, in thermodynamics many relations between quantities are given in terms of 
derivatives, so that in order to obtain one quantity we may be required to find a deriva- 
tive of another quantity. Examples for this are the specific heat, the elastic moduli, and 
thermal expansion coefficients of a substance. Other examples involve chemical 
reaction rates, measurements of mechanical accelerations, damping coefficients and 
related quantities, such as viscosity. In the case of phonon spectra, the density of states 
depends largely on the three-dimensional gradient of the dispersion relations. These 
are only a few relevant examples. 

The purpose of this article is to introduce an interpolation and approximation 
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method which is capable of reducing random errors in the data and of calculating 
derivatives to a high degree of accuracy. In this article we are mainly interested in the 
method itself and in its various physical and other applications, and not so much in the 
rigorous mathematical side of the method. For this reason the mathematical back- 
ground includes only brief proofs, and no attempt is made to elaborate on many details 
of the method. Some interesting points of a more mathematical nature are discussed 
in Appendix C. 

There exist other methods for data approximation. Most widely used are polynomial 
interpolations [l] (also referred to as Taylor series expansions), Fourier expansion [I], 
and the Spline method [2]. The disadvantage of the expansion methods lies in their 
inability to produce good derivatives. The Spline method is better for this purpose and 
it will be shown to be a special case of the present method. There also exists another 
method that employs rational functions [l]. This method is highly reliable for all 
purposes, but computationally it is prohibitively complicated, even if handled with an 
efficient computer. 

In Section 2 we introduce and construct the method. Section 3 contains practical 
considerations and expressions for many applications. In Section 4 we treat the prob- 
lem of noise in the data, and apply the method to a few examples in Section 5. We 
summarize the article in Section 6. 

2. MATHEMATICAL BACKGROUND 

In this section the approximation method is presented. We start by stating the prob- 
lem of interpolation and argue that it is advisable to employ smooth functions for 
approximation. For this purpose a smoothness norm is introduced in such a manner 
that the smoother the function is, the lower the norm. This norm also includes deriva- 
tives, and to simplify its use it is chosen as an appropriate inner product. With this 
norm we solve the problem of interpolation, bound the error terms, and conclude that 
this method yields good approximations for the function and its derivatives. In addi- 
tion, we apply this method to functional approximations, which is illustrated by a 
simple numerical example that demonstrates the efficiency and the power of the present 
method in comparison with ordinary orthogonal-functions approximatibns. For 
functional approximations our choice of smoothness norm is a very natural one, 
almost self-evident, when derivatives are required. Finally, we extend the method to 
include a few practical cases. 

The typical interpolation problem [l] can be formulated in the following way: 
Given a few values F&Y,), F(&.),..., F(X,) of a function F, it is required to guess a 
“best value for F(x), where X is not equal to any of these values. In more general 
cases, it may also be required to guess “good” values for the derivatives of F(x). 

The classical approach is to expand I;(x) as a series of some basic functions&(X), 
i.e., F(X) = cf, A&(X), and to determine the Al, so that the series assumes the 
given values of F. 

In the usual case only a finite number of data items are given, and there is an infinite 
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number of solutions for Al,. Thus only the first N functions fk(X) are considered, 
where N is the number of data items. In this way the solution is unique, and all Ak , 
for k > iV, are assumed to be zero. The resultant series Z(X) is 

k=l 
(1) 

where Z(X) is the interpolation function used as an approximation to F(X). 
The results of such a termination of the series may be undesirable. It is well known 

[3] that for some cases, when polynomial interpolation is employed, the interpolation 
function does not approximate F(X) at all for too large a value of N. Such an example 
is illustrated in Fig. 1. The source of the trouble lies in the large oscillations of the 
interpolation function between the given points. The remedy to this problem may be 
in the addition of a few more terms A&k(X) (k > N), so that Z(X) will both assume 
the given values and will not oscillate. 

On the other hand, since we have only N given points, we can determine uniquely 
only N different A, values. In order to obtain a good interpolation we need a method 
that incorporates Ak of high k into Z(X) and determines their values. 

The approach adopted here is to choose Z(X) as the smoothest possible function 
passing through all the given points. In order to accomplish this we need a criterion 
for smoothness, and we choose one that is simple and practical. 

Let F(X) be defined in an interval (a, b), so that both F and its derivatives are finite 
in (a, 6). The magnitude of the derivatives of F(X) in comparison to some average of 
F(X) gives an estimate of the oscillatory nature of F(X). We may restrict ourselves to 
the first derivatives only and construct Z(X) so that these derivatives are minimal. In 
this special case Z(X) may be an interpolation function with a limited number of 
derivatives. In particular, choosing Jf I Fck)(X)12 dX to be minimal results in the 
polynomial Spline [2] interpolation of order (2k - 1). However, this restriction has 
its limitations. First, no derivative beyond the (UC - 1) order is computable. More 
important, Z(X) is not analytic, and therefore it is hard to extend it to more than one 
dimension. Also the error bounds remain large unless more derivatives are included. 

For these reasons we construct a measure NZ(F), called the “Smooth Norm,” 
which includes all the derivatives 

[NZ(F)]* = f (1/(4n)!) [” 1 F’“‘(X)!2 dX. 
?LL0 Jn 

Such a norm is finite for every F(X), with a finite number of finite-order poles [4]. 
The constants 1/(4n)! are introduced for convergence. [NZ(F)]* is positive and quadratic 
in F(X) and its derivatives. It should be mentioned, perhaps, that c 1 F&)1* dX is the 
first term in [NZ(F)12. We define also a co-smoothness functional Z(g, h), 

Z(g, h) = f (l/(4??)!) Jb g’““(X) hyX)dX, 
n-0 a (3) 
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so that 

[Wg + w = I(g + A, g + 4 = a) + WJ) + wh g) + &5 4, (4) 

where * indicates a complex conjugate, and I(g) = I( g, g). 
I(g, h) is actually an inner product between any two complex analytic functions, 

g(X) and h(X), and it is finite whenever both I(g) and I(h) are finite (see Appendix C). 
In practical cases it is convenient to choose a set of “orthogonal” functions g&F), 

so that 
mk 2 8,) = ~kJkk). (5) 

This can always be accomplished for a set of linearly independent functions by employ- 
ing an orthogonal construction method analogous to the Schmidt [5] process. 

We restrict ourselves to a functional space for which all Z(g) are finite. In this space, 
summations and integrations (as in Eqs. (2), (3)) are interchangeable. 

Using the smooth norm, the interpolation problem is now formulated as follows. 

(a) Construct a series Z(x) = Cr=‘=, &g,(x), so that 
(b) Z(Xi) = F(X,) for the given points of X1 , X, , . .., X, , and 
(c) Z(Z) = minimal value. 

We now show that this problem admits one, and only one, solution, Z(X), namely, 

Z(X) = 5 A,R(X, Xj). (61 
j=l 

The proof for this is as follows. 
Let Z be a co-smoothness functional defined over an interval that includes all the 

points Xi . Next we choose a complete “orthogonal” set of functions gk(X), so that 

Zkk 9 81) = ~kJkk). 

Now we expand Z(X) in this set, 

zv> = f Akgkw 

(7) 

(8) 
k=l 

In order to obtain the minimal value of Z(Z), where Z is subject to the constraints 
Z(&) = F(:(x& we use the method of Lagrange multipliers, 

k = 1, 2, 3 ,..., co, (9) 

where hj are constants determined by the constraints. Substituting for Z(Z) from 
Eqs. (4, 7, 8), we obtain 

Ak*z(gk) = f xj*gk(xj), k = 1, 2, 3 ,..., CD. 
j=l 
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Therefore, 

Z(X) = f vw, y> b--x, 9 Z(Z) = f x,xj*zqxj ) Xi), (11) 
j=l i,j=l 

where 

m, y> = 2 gktx)gk*tY)mk~. 
k=l 

(12) 

R(X, Y) is called “the generating function.” It will be shown later, by actual construc- 
tion in Section 3, that the series for R(X, Y) converges. 

The N constants Xj are determined by the set of N linear equations (i = l,..., N) 

Z(XJ = 2 xjzqx, ) Xj) = F(XJ. (13) 
j=l 

R(X, , Xj) is a nonsingular matrix (see Appendix C), so that hj has a unique solution 
leading to a unique Z(X). This completes the proof. 

It is interesting to note that the interpolation problem can be easily extended to 
include other kinds of data, such as derivatives or integrals (see Appendix C). 

Apart from solving the interpolation problem, it is also important to make an 
estimate of the error, or at least to find an upper bound for it. We show below that 
the difference F(X) - Z(X) = t(X), which is the “error in Z(X),” is bounded. This 
bound decreases with N, the number of data points, and consists of two factors, one 
of which is I(F); the other depends only on the values X, . A similar bound exists also 
for the derivatives P)(X) = P)(X) - Z(“)(X). 

Since I(F) is quadratic in F, and Z(X) is the smoothest approximation to F(X), 

This leads to 
(d/dA)[Z(Z + At)] = 0. 

Z(F) = Z(Z) + z(t). 

For any value Y we have 

I WI2 = I W> - W)12 < Z(t) MaxiI G(Y)12/WN, W) = Z(F) 

where G(X) is any function which obeys 

G(X,) = 0, i = 1, 2, 3 ,..., N. 

(14) 

(15) 

W% (16) 

(17) 

G(X) represents all the functions that satisfy Eq. (17). l(X) also belongs to this set, and 
for G(X) = t(X), Eq. (16) becomes an identity. The meaning of the Max in Eq. (16) 
is that we choose the largest values of 1 G(Y)12/Z(G) among all the G(X). This maximum 
is called the “Normalized Error” 7, and it is shown in Appendix B to be bounded by a 
factor that decreases exponentially to zero with N. Also, the normalized error does not 
depend on F(X), but only on the values Xi. 
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Similarly, the normalized error for the nth derivative is defined by 

and 
rl,O’) = Max{1 GYWMG)~ (18) 

1 P’(Y)12 = 1 F(“)(Y) - Z’“‘(Y)j2 < I(t) Q&(Y). (19) 

The error terms P(Y) are composed of two factors: (1) I(t), which is positive and 
smaller than I(F) (by Eq. 15), and (2) qn( Y), which can be calculated (see Appendix B). 

It is important to emphasize that the error term P(Y) decreases exponentially 
with N also for the derivatives (n # 0). This property makes the present method good 
for derivatives as well. 

The smooth norm M(F) can be extended in various ways. First, it is clear that the 
convergence coefficients 1/(4n)! in Eq. (2) can be replaced by more general coefficients 
& , where B, is the coefficient of the term with the nth derivative. The only restriction 
on B, is that the series should converge (see below) and that B,, # 0. The latter condi- 
tion will be relaxed later on in Section 3. M(F) is therefore given now by 

and 

[AT( = f j B, I 1” I F’“‘(X)12 dX, (20) 
n=0 a 

I(g, h) = f j B, / 1” g’“‘*(X) h’“‘(X) dX. (21) 
9t=O a 

It is interesting to note that the stronger B, -+ 0 for n + co, the smaller is the smooth 
deviation I(t); but the normalized error 7 tends to become larger. 

The choice of B, is of particular interest, since it can affect the value of Z(X), 
especially whenever X is between two largely separated points Xi and X,+r . The best 
choice for B. depends on the particular problem treated, and this will be discussed 
below. 

Another point of interest concerns the extension of the interpolation problem to 
many dimensions. The case of three dimensions is important for practical reasons, and 
the smooth norm is given for this case by 

WF’)12 = f I Blcl.lcz,lcs I 1 0 / 
ak,+ka+lc, 

axkl a yka azh m, K Z) 12. cm 
k,.k,.k,=O 

For isotropic spaces, the Bk should be 

B kl.kmka = (kl+k2+ka)!B(k,+k2+k) 
k,! k,! k,! 3’ (23) 

The above derivations hold for multidimensional norms. 
A topic related to interpolation is the problem of functional approximations. We 

wish to approximate a known function F(X) by another function Z(X), so that the 
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values of 2 and its derivatives are similar to those of F. In view of the above treatment 
we require that 

l(t) = I(F - z) = f 1 B, 1 s” 1 F@)(X) - Z’n)(X)12 dX = Minimum, (24) 
n=a a 

where B. # 0. 
As a matter of fact, Eq. (24) could have been obtained by using different arguments, 

as follows: The customary measure for similarity between F(X) and Z(X) is the Hilbert 
norm E 

E = j” 1 F(X)- Z(X)12dX. 
a 

(25) 

If E is small, Z is considered to be a good approximation to Fin the interval b > X > a. 
Whenever the derivatives of Z are also required to approximate those of F, then one 

should consider them as well. A natural extension of Eq. (25) is 

I(t) = f 1 B, I 1” I Ftn’(X) - Z’n’(X)12dX, 
T&-O a 

where the B, are some appropriate factors. This generalization is identical with Eq. 
(24). If Z(X) is chosen to yield a small I(t), then Z(X) is “a smooth approximation of 
F(X).” 

The criterion of small I(t) defined in Eq. (26) is far better than the customary crite- 
rion of small E given in Eq. (25). The reason for this is that small E ensures small 
average differences between F and Z, while large deviations at few points can, and 
sometimes do, occur. Moreover, small E does not necessarily guarantee anything 
about the derivatives. In contrast, small I(t) applies simultaneously to the functions 
and their derivatives. This prevents strong local oscillations in (F - Z). 

As an illustrating example that compares the two methods of approximations, we 
approximate the function Y(x) = x by a finite Fourier series in the interval --r/2 < 
x < 7r/2. In the first method we require small E, according to Eq. (25). In the second 
method a small I(t) is required, according to Eq. (26), where B, are chosen as B, = 
1/(2n) !. Z(X) is given by 

Z(x) = 5 A, sin(kx). 
k=l ' 

For small E we obtain 

A 
k 

= 4(-l)(k--1)/z 

rrk2 ’ 
odd k, 

(27) 

(28) 
= 0, even k, 
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while for the criterion of small I(t), A, is computed numerically (see Appendix A), 
and for a lo-term sum we have 

A, = 1.887126777, A, = -7.91687954 E - 1, A, = 3.922823498 E - 1, 
A4 = -1.923702372 E - 1, A, = 8.754457207 E - 2, A, = -3.548715046 E - 2, 
A, = 1.230901617 E - 2, A, = -3.45991852 E - 3, A, = 7.15906738 E - 4, 

A,, = -8.55918961 E - 5, 

with a smooth deviation I(t) = 8E - 7. 
In Table I we compare the results of the two methods. The deviations Y - Z and 

Y(“) - Zfn) for IZ = 1, 2, 3, 4 for 5-, lo-, and 15-term series are listed. For the small E 
criterion the values of Ytn) - Z(@ increase drastically as y1 increases. This shows that 
the small E criterion does not guarantee a good approximation of the derivatives Y(“) 
by the derivatives Ztn), whereas the small I(t) criterion provides for this very efficiently. 

TABLE I 
Errors in Approximation of Y(X) = x by Fourier Sums 

The “number of terms” refers to the number of non-zero terms. 

Small E Small Z(t) 

Number of terms 5 10 15 5 10 15 

MAXI Y-Z1 6E-2 3E-2 2E-2 6E-4 IE-6 2E-9 
MAX 1 Y’l) - Z”’ 1 1 1 1 4E- 3 lE-5 4E-8 
MAX I Y'Z) - 2'2' 1 5 10 15 5E-2 2E-4 2E-6 
&,ffi 1 yw - Z’3’ , 3El lE2 2E2 1 2E - 3 2E - 5 
MAX I Yf4) - Zc4’ I lE2 4E2 lE3 10 3E - 2 3E - 4 

~03. (25)) 4E - 4 5E - 5 1E - 5 <lE-6 <3E - 12 <lE - 17 

10) 0%. (26)) lE2 5E5 5E9 8E - 4 8E - 7 1E - 9 

One striking result of Table I is that not only is I(t) smaller for smooth approxima- 
tion, but also E itself is smaller in this case for our choice of Ak , The reason for this is 
that for the small E criterion only odd terms in Eq. (27) are needed, while if derivatives 
are also included, even terms are needed as well. Our criterion of small I(t) suppresses 
completely the Gibbs [lo] phenomenon at the interval boundaries, which contributes 
significantly to the small E criterion. 

3. PRACTICAL EXPRESSIONS 

The generating function R(X, Y) plays a central role in the application of the present 
method. A priori there is a lot of freedom in the choice of R(X, Y). It is very useful, 
although not necessarily vital, to construct R(X, Y) in conjunction with the nature of 
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the particular problem, e.g., the periodic problem should be naturally expressed in 
periodic functions, and problems symmetrical in Xwith even functions. Such symmetry 
conditions (especially in two or three dimensions) constitute a set of constraints to be 
observed. One advantage of this method is its ability to easily incorporate general 
information such as symmetry, boundary conditions, asymptotic behavior, and ana- 
lytic linear properties. The way of employing some of these properties will become clear 
by the examples given here. 

In general, those symmetry properties that commute with the functional I (see 
Eq. (3)) are incorporated directly in the generating function R(X, Y): The initial set of 
functions g&C), orthogonal with respect to Z, is divided into two classes, those which 
have the symmetry, and those which do not. R(X, Y) is then constructed from the 
glc(X) of the first class only, (see Eq. (12)). Other constraints are incorporated by 
including appropriate terms in Eq. (9). 

Another advantage of this method is that it admits a large degree of freedom in 
choosing the coefficients B, in Eq. (21). This allows us to choose R(X, Y), as given in 
Eq. (12), in a flexible way, e.g., by using simple and well known functions. 

Although this method is readily applicable to problems in fields other than physics, 
we confine ourselves here to physical examples. Most of the physical measurements are 
“well behaved” functions, i.e., they are bounded and have bounded derivatives. There 
are notable exceptions to this, such as physical properties near phase transitions. The 
method in its present form is inapplicable for cases that include singularities, unless 
the singularities are removed. 

We now treat a few general cases that cover many physical examples. These are: 

(a) Periodic, F(X) = F(X + 27~); 

(b) infinite interval, where F(c0) = 0, F:;‘m”{ = 0; 

(c) finite interval, where F(X) is well behaved over a limited interval. 

For the periodic case, Is(x) = F(x + 27r), the natural set of complete independent 
functions g&%7) is given by 

gk(X) = exp(ikX); k = 0; *l; f2;...; &-cc, 

and this set is already orthogonal with respect to I. R(X, Y) is given by 

(29) 

(30) 

and 

Z( gk) = 277 i / B, I kzn. 
VZ=O 

(31) 

B, can still be chosen. For special choices, Z(gk) can be represented by a known 
function, for instance, for B, = l/n ! we have Z( gk) = 2rekB. Other choices for B, 
and Z( gk) are listed in Table II. The normalized error r] is given by Eq. (18). For the 
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particular case where the points Xj are equally spaced, i.e., Xj = 2rrj/N, qZ for the Ith 
derivative is given by (see Appendix B) 

vz = rG$f$x,~~l GYJO/2/4~N < WV2) + llzE exp[--r.Y(N)I, (32) 

where C = 0 (l), and a(N) is given in Table II. 
Nonperiodic functions F(X) are either known over an infinite range, or in a finite 

interval. For an infinite interval the Fourier sum of R(X, Y) of Eq. (30) becomes a 
Fourier integral, which can be calculated in some cases, as given in Table II. 

For the finite interval case, (conveniently chosen as (- 1, 1)) of nonperiodic function 
F(x), there is no simple set of complete and independent functions which are ortho- 
gonal with respect to I. A convenient and simple set is given by 

gl,(X) = x-+, k = 0, 1, 2 ,..., co. (33) 

This set is not orthogonal, so that I(g, , gJ # 0, and X(X, Y) is found according to 

R(X, Y) = 1 RkZXkYZ, (34) 
li.2 

where Rkc is an element of the inverse matrix of I, where 

Ikl = I(P, Xl). 

In this case Rkl is evaluated numerically. 

(35) 

In some important special cases, in particular, when interpolation is performed 
between distant points, it is convenient to set B,, ---f 0. The reason for this is that if 
B0 # 0 (actually all BI, are nonnegative by Eq. (21)), the interpolation function between 
distant points tends to curve towards zero. On the other hand, if B,, + 0 the inter- 
polation function between distant points tends toward a linear interpolation. We 
distinguish between “near” and “distant” points by introducing a measure D called 
“correlation length.” D can be chosen somewhat arbitrarily and for a good choice it is 
related to the average density of points. In the applications we discuss also the choice 
of D. In this case the solution of the interpolation problem is (see Appendix C) 

Z(X) = A + 5 ii,R(X, X,), I(Z) = 2 hjZ*(Xj), 
j=l j=l 

where A and A satisfies the equations 

Z(Xj) = F(Xj) (j = 1, 2, 3 ,..., N), 
(37) 

We summarize the expressions for the periodic and nonperiodic (infinite interval) 
in Table II. In the Grst column B, is given in terms of D. In the second column we bring 
the values of I(g,) for the various choices of B,, for the periodic case. R(X, Y) itself is 
given by Eq. (30). In the third column, cy(N) for Eq. (32) is given. In the last column, 
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R(X, Y) for the innnite interval case is expressed by simple functions according to the 
various choices of B, except for the last one. We have for R(X, Y) of the fourth column, 

w, 0 = J-+mm exp[ik(X - Y)]/l(exp[ikX]) dk, (38) 

wherer = IX--- YI. 

TABLE II 

Bk 

D=/k! 

DBL/(2k) ! 

D=@k)!, B0 + 0 

Dsk/(4k)! 

IW 4N) NX, r> 
(Periodic case) (Periodic case) (Infinite interval) 

2a exp(D*Z*) DaN2/4 exp(-ra/4Da)/2Dn11P 

277 cosh(DI) DN/2 l/(20 cosh(nr/2D)) 

Zr(cosh(DZ) - 1) DN/2 -r coth(vv/D)/Da 
a(cosh((Dl)‘le) + co~((Dl)~/~)) (DN/2)lla * 

The spline method [2] of interpolation can be shown to be a special case of our 
method for the case of Bk -+ 0 for k # m and B,,, = 1, where (2m - 1) is the order 
of the spline method. In this case I(gR) = 2rk2m, and for infinite interval 

R(X, Y) = 2(;--yl), / x - Y p-1. 

The interpolation function Z(X) is given by 

77-l 

Z(X) = c AkX" + 5 h,R(X, X,), 
k=O j=l 

where Ak and x are the solutions of the set of equations 

(40) 

Z(&) = Wi) i = 1, 2,... N; (41) 

T hjXjk = 0 k = 0, l,..., m - 1. (42) 
i=l 

Another important case is the nonperiodic, isotropic, infinite, three-dimensional 
space (Eqs. (22) and (23)). For 

and for 

D2” 
B(k) = k!, 

R(X y> = ev(--r2/4D3 
, fjD2,W ’ 

B(k) = (f;;! 3 Bo -+ 0, 

WC Y) = -& ; $ [r coth (%)I, 
wherek=k,+k,+k,andr=]X-Y]. 
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4. PHYSICAL DATA EVALUATION 

Physical data consist in most cases of measurements, and sometimes of numerical 
computations. Data points usually include experimental or computational errors, at 
least part of which are random. We refer to this part as “noise.” 

In every data evaluation it is highly desirable to reduce the noise level as much as 
possible. This is necessary in order to extract information from the data. In many 
cases this procedure enables one to compare experiment with theory, since theory may 
provide for analytical expressions that describe the data. 

However, it is not always simple to extract information from experimental points, 
and this is particularly so when the data points are few and sparse. For abundant data 
with low noise level it is easy to derive results even with simple methods such as 
least-square fitting or a moving average procedure [6]. For sparse data it is sometimes 
required to squeeze information out of the data. In order to do it successfully one is in 
need of a more efficient method, which may be somewhat more complicated. Example 2 
in Section 5 about the heat capacity of SrTiO, illustrates how the present method can 
reveal a small kink obscured by large noise. 

The objective in any noise reduction procedure is to find some function that passes 
as closely as possible to the data points, and is at the same time also as smooth as 
possible. The process of smoothing is actually the reduction of the random noise. These 
two requirements are actually somewhat contradictory. They can be combined into 
a single condition of minimizing the deviation from the measured points and the 
smoothness norm of the function. The formulation of this is 

~llz,w~)12 wi + w&F) = Minimum, (45) 

where (Zj , &) are the data points, wi and w, are weighting factors, and r;(X) is the 
desired function. 

The solution of this minimal value problem is 

F(X) = 2 X,R(X, Xj), 
j=l 

where R(X, Y) is the generating function, and the A obey 

: A,[R(X, , A’,) + wO/wjSji] = Zi (i = 1,2 ,..., N). 
j=l 

(461 

(47) 

There is some arbitrariness in the choice of w, and We . It is feasible to choose w5 
in conjunction with the experimental error AZ, , e.g., wi = (dZj)-2. VV,, is of central 
importance in Eq. (47) since it determines the amount of smoothing of F(X). A too 
small w, will produce a spiky F(X), since the noise of Z, will appear in F(X,). Too large 
a value will produce a very smooth F(X) in which Z(X,) has been smeared altogether, 
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In the absence of any additional information, it is suggested that one should compro- 
mise between the two extremes and take w,, as 

wo = NW), (48) 

which equilizes the two terms in Eq. (45). The actual choice of w,, is not very crucial.. 
In practical cases I(F) is not known. Therefore w, can be varied until the first term 

in Eq. (45) is about N. 
An important application of the present interpolation method is for calculating 

integrals with high accuracy. Once an interpolation function Z(X), which approximates 
F(X), is known, we can integrate F(X) over a range (a, b) by 

/bF(x) dX = 1” Z(X) dX = f CjF(Xj), 
a a i=l 

where C, can be calculated and depend only on Xj , but not on F(XJ. In Appendix D 
we bring a tabulation of Cj for even division of (a, b) for N < 10. 

Similarly, this can also be applied to differentiation of F(X) at some X0 . We obtain 

P’l)(XO) N Z”‘(XJ = f CjF(Xj)y 
j=l 

(50) 

and a tabulation for Ci for N < 10 is also given in Appendix D. 

5. EXAMPLES FOR APPLICATIONS 

We bring here four examples. The first is a simple interpolation of a known func- 
tion, which is an illustration of the method. The other three examples are actual 
applications to experimental data. The last example illustrates various difficulties that 
may be encountered in the interpolation of experimental data. 

1. Interpolation 

In this example we illustrate the application of the method to a simple interpolation 
problem. 

We choose the function F(X) = (1 + 16X7-l in the range (- 1, 1). This function is 
very simple but is known to be difficult to interpolate by polynomial expansion over 
this range. We show that by using our method no difficulties are encountered for this 
case. The values of the function at X = 0, rt 1 are given. 

The function is analytic and integrable in -co < X < co. The derivatives are 
bounded by 

1 F’“‘(X)I < n! 4% (51) 
By choosing Bk = P/(2/c)!, I(F) = 77/8(1 - 402). Therefore, D is arbitrarily chosen 
as +, just in order to ensure convergence. From Table II, 

m Y) = (3/2) cosh[3rr(X - Y)/2]. (52) 
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We obtain 
Z(X) = U(X - 1) + uwy + hNX + 11, (53) 

subject to conditions 

with the solution 

Z(l), Z(-1) = l/17; Z(0) = 1, (54) 

A,, A, = 0.027; A, = 0.666; I(F - Z) = 0.038. (55) 

Z(X) can now be calculated at intermediate points, and the maximum deviation of 
Z(X) from F(X) can be found. The same calculations have been performed for inter- 
polation with more data points, and the results are tabulated in Table III. For compa- 
rison, the same problem has been solved using the Lagrange (polynomial) interpola- 
tion formula. The abscissa (of data points) were taken, in both methods, as X, = 
(2J - N - l)/(N - 1). N is the number of data points. 

TABLE III 

Maximum Deviation in Interpolation of F = (1 + 16P)-I, -1 < X < I 

N 5 6 7 8 9 10 11 13 15 

Max 1 F - Z I, Lagrange 0.4 0.3 0.5 0.16 0.7 0.25 1.2 2 

Max 1 F - ZI, Smooth 1.6E-1 4E-1 4E 2 1.6E-1 2E-2 7E-2 7E-3 5E-4 2E-3 

I(F-Z) 4E-2 3E-1 3E-2 1.7E-1 2E-2 lE-1 1.4E-2 7E-3 5E-3 

The interpolation itself is shown graphically in Fig. 1. On the left-hand side (range 
(-1 < X < 0)), we use the smooth interpolation for N = 7 and N = 13 points. 
For N = 13, the interpolation is indistinguishable from the function itself. On the 
right-hand side, we use polynomial interpolation for the same number of points and 
the results speak themselves. 

In Table III we bring the numerical results for the maximum deviations for the two 
methods. 

It is interesting to point out that the error in (F - Z) are much larger for an even 
number of points. For an odd number of points evenly spaced, the sharp maximum 
value of F (at X = 0) is included, and this improves the approximation significantly. 

2. Heat Capacity Data 

In this example we analyze the heat capacity measurement of SrTiO, carried out in 
our laboratory [7]. The heat capacity of SrTiO, was previously measured by Gamier 
[8] and a small kink in C, was observed near 105” K. The measurement of C, in our 
laboratory was made according to a different technique, by which the sample is 
heated by a constant power Q and the temperature is measured at constant time 
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~&rim d F(x) = l/ (1+16 x2) 

- y=&q- 
--_- Smooth inrerpdakon 7 points 

. . . . . . ..I... po,p@-n~, . 7 , 

_._._. _, _ -._ I . 13 . 

-1 

FIG. 1. Comparison between smooth and polynomial interpolations. The interpolation functions 
are symmetric in Xand therefore are plotted for only half the range. Note the wild oscillations of the 
polynomial interpolation near P = 1. For smooth interpolation with 13 points, the line is in- 
distinguishable from the function Y = l/(1 + 16-P) itself. 

SrTi03 

0 Row Data 
l ’ Smooth ] 

1 1 

FIG. 2. Heat Capacity of SrTiO,. Comparison between raw data and smoothed values (see 
text). 
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intervals. The objective of the experiment was to investigate the kink at 105” K. The 
heat capacity of the sample is given by Q/(0/&). In this experiment there was an 
experimental uncertainty of 1 % in the temperature differences, which yield dT/dt, 
and therefore it was necessary to smooth T as a function of t, and then find dT/dt. 
Ordinary smoothing methods were inadequate and we used the method given here. 
We approximated T as a function of t by 8(t) over equal intervals, each one including 
N data points. Then we applied Eq. (45). 

i [‘(‘,I - TttJ]” + WJ(@ = minimum, 

where all wi = 1. The solution 

e(t) = 2 hjR(& tj) 
i=l 

was now used to approximate dT/dt by 

dT 
I I 

2 
tNl2 

-&- ti _ dt = 1 CkT(ktk)* ti k=-N/2 

(56) 

(57) 

(58) 

Since T was measured at equal time intervals, C, had to be calculated only once. 
In Fig. 2 we compare the heat capacity obtained from unsmoothed data to that 

obtained from the smoothed data of the same experiment. 

3. Miissbauer Spectra 

In this example we show how the present smoothing data are capable of smoothing 
out random noise and exposing true experimental features from very scarce experimen- 
tal data, The example we chose for this is the Mossbauer effect spectra. The reason for 
this choice is that we started off with scarce data, derived the spectral features and then 
compared the smoothed data with data of the same material obtained with much better 
statistics. Since the motivation here is just to test our method, the experimental 
details are of no interest. Let Yj be the number of counts in channelj. & is the smoothed 
approximation of Yj taken over N neighboring channels (just as in the previous 
example). We obtain in the same manner 

+N/2 

zj = c CiYj,, . (59) 
L-N/2 

The Ci are calculated by the method presented in Eqs. (45,46,47). Define a matrix D, 

Dfj = R(Xg 3 Xj) + W,6ig e w9 

Let D-l be the inverse matrix of D. Then 

Cj = c R(X, , Xi) Dij’. 
k-N/2 

(61) 
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In Fig. 3 we show the effect of smoothing by varying the w,, of Eq. (49, and wj 
are all equal. Four sets of data are brought, namely, with averages of 500, 1500, 3000, 
and 150,000 counts per channel. We see clearly that smoothing of the poor data 
predicted the shape of the rich data very well. The “weight” is proportional to w,, . 

4. Calibration of a GaAs Thermometer 

In this example we treat the calibration of a GaAs resistor thermometer. The 
motivation for presenting this example is that it poses several difficulties that must be 
understood. In this example we show how to carry out the smoothing and how to 
incorporate physical consideration in treating the difficulties. 

In Fig. 4 we show the measured resistance against temperature. The experimental 
uncertainties are AT = 8(1O-2 OK) and AR = 0(10-4). For the actual use of the 
GaAs thermometer we need a smooth function of T vs R and a smooth dR/dT vs T. 

The data can be roughly divided into three intervals: T > 40 “K, 15 “K < T < 
40” K, and T < 15 “K, according to their behavior. The intuitive approach of 
treating separately the data in the different intervals leads to serious difficulties at the 
boundaries. The merit of the present method is in its ability to handle all the intervals 
simultaneously. Since the temperature range is quite large (4” < T < 260 OK) and 
increments of, say, 1 “K at 4 “K are relatively much larger than at 250 “K, we 
“stretch” the temperature scale by choosing another variable X = Trln, where n = 4 
is found convenient for this purpose. Now we apply Eqs. (45,46,47), where R(X, Y)is 
given in Table II by 

R(X, Y) = 1 
20 cosh( w/2D) ’ r= IX- YI, (62) 

and D = & is chosen in such a way that data points widely separated in temperature 
have little effect on each other. The smoothing weight w0 was varied over a few orders 
of magnitudes in order to find its best value. A high w,, led to good smoothing of 
dR/dT, but also to large deviations of the smoothed R(T) from the experimental 
values. A too low w0 gave small deviation from experimental data, but a spiky dR/dT. 
The optimal compromise is to choose w, , which gives deviations of the order of the 
experimental uncertainties. In Fig. 4 we bring the computed dR/dT and the deviations 
of the smooth function from the experimental values. The value of w0 itself is not 
crucial, and the results were practically the same for 10 w0 and w,/lO. Also the choice 
of D = 0.5 is not crucial. 

It is important to point out that the process of smoothing may do some harm in 
smoothing away real structure that may exist in the data. This example is perhaps 
such a case. The only guideline that may prevent us from over-smoothing the data is 
the expected experimental uncertainties. In other words, smoothing should not pro- 
duce deviations larger than the expected experimental errors. 
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FIG. 3. The effect of smoothing on a Mijssbauer spectrum. The four spectra are for the same 
sample taken with different statistics and are plotted one under the other. The pairs of points on the 
left represent the statistical noise level: 1 and 1 + 1/@1)‘/~. All four spectra are smoothed simultaneous- 
ly. For weight = 0, no smoothing is applied. 
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FIG. 3. Continued 
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Ga As 

* R (Experimental) 

- dR/dT (calculated) 
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FIG. 4a. The resistance vs temperature as measured for GaAs diode. The resistance is given in 
arbitrary units. The solid line is the computed dR/dT obtained after smoothing. 

FIG. 4b. The deviation of the smoothed values of R(T) from the measured valued. The smoothing 
weight is chosen so that the deviations do not exceed the expected errors and do not show any detinite 
nonrandom pattern. 

6. DISCUSSION AND CONCLUSION 

In this article we have presented a new method for approximating data points by 
functions. The novelty in this method is that it is designed to yield simultaneously good 
approximations for the function as well as for its derivatives. This method admits a 
high degree of flexibility, so that it is possible to incorporate into it general constraints 
such as symmetry or boundary conditions. The main advantage in this method is that 
the inclusion of the derivatives in the approximation prevents the function from 
oscillating between given points. 

The best known approximation method in literature is the polynomial inter- 
polation. Its main disadvantage is in its convergence, which permits unbound oscilla- 
tion when the order of the polynomial is too high. The usual solution for this drawback 
is by piecewise fitting of lower-order polynomials in consecutive segments. This 
creates another problem, where the derivatives at boundary points between segments 



SMOOTH APPROXIMATION OF DATA 113 

are not continuous. The remedy for this is a piecewise polynomial fitting in adjacent 
segments in such a way that the first derivatives are continuous at the boundary 
points. This procedure is called “spline” [2]. We have shown in Section 3 that the spline 
method is a special case of the present method. One shortcoming of the spline method 
is that one must know the values of the derivatives at the boundaries of the total 
interval. In the absence of any better knowledge, these are taken as zeros. This may 
occasionally cause trouble. In our method these derivatives are fixed by the method 
itself. Another shortcoming is associated with the order of the spline, so that it is 
impossible to obtain even an estimate for derivatives higher than the order of the 
spline. 

The main advantage of the spline method is in its simplicity and ease of computa- 
tion. This method is recommended for the cases where derivatives are not important 
for the calculation. Even in these cases it is advisable to employ the constants as given 
by our method, instead of the customary zeros for the derivatives at the end bounda- 
ries. 

An important feature of the present method is in its ability to connect in a smooth 
manner data points belonging to different ranges of a given parameter. This is achieved 
by a suitable choice of the correlation length, as discussed in Example 4. Another 
important and exclusive feature of the present method is that it is not confined to one 
variable only. We have shown how to extend it to three dimensions, and it will be 
applied [9] in a future publication to phonon dispersion relations in Pb and transition 
metals. 

In the general application of this method we encounter an interesting and important 
question of the relevant information that might exist apart from the given data points. 
In the extreme and simplest case we have only data points which simply relate one set 
of values to another. In this case all the method can do is to give the smoothest curve 
that connects the points. In some cases, we have additional information concerning 
the error bounds of the data points. The inclusion of errors permits the curve to pass 
in the vicinity of the points instead of through the points themselves, which results in 
additional smoothing of the curve. 

In many actual cases that occur in natural sciences we may also have some con- 
straints associated with some form of theory that may exist for the data points. These 
constraints can be partial or detailed (say, in the form of a formula), and all these can 
be readily included in the present method. The theory can be presented in diverse ways. 
For instance, it may be in the form of a simple formula which involves only the fitting 
of a few parameters. In more complicated cases it may involve integral or differential 
equations, where our method proves to be very helpful. However, a theory in general 
does not necessarily predict correctly the values of data points. Therefore, the theory 
forms a bias that influences the way by which we fit the data points. Actually, if one 
wants to test a theory, one should omit the constraints provided by this theory and 
check to what extent they affect the curve fitting. In other words, our method does not 
depend on the existence of a theory, but it can readily accommodate a relevant theory. 
As a matter of fact, the requirement of smoothness is also a bias in a way, although 
of a much more general nature. In some extreme cases we even know that smoothing 
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may give wrong predictions, such as in the cases of strong singularities in the data. 
In most cases, however, we believe that smoothness is a general feature of physical 
phenomena. 

In conclusion, we believe that the method presented here will be useful for a large 
variety of problems encountered in field of science and technology, where one is in 
need of data fitting by analytical functions. 

APPENDIX A: SMOOTH APPROXIMATION OF FUNCTIONS 

Given a function F(X), we wish to construct a series Z(X) as an approximation to F, 
so that the smooth deviation Z(t) of F from 2 will be minimal. 

Z(X) = 5 Akgk(n Z(F - 2) = Z(i). (Al) 
k=l 

Rearranging terms, 

Z(F - 2) = f A,*&&?, , 8,) - 2 (Ak*I(gk , F) + AkQE gk)) + WT FL 
k.Z*l k-l 

642) 
where Z is the cosmoothness functional 

Z( g, h) = f 1 B,, I I” g’“‘*(X) h’“‘(X) dX. (A3) 
n-0 a 

By definition Z(t) is nonnegative. The quadratic form (A2) has one and only one mini- 
mal value. This minimal value is obtained by some set of &‘s. (If all gk are linearly 
independent, there is only one such set. If they are linearly dependent, there may 
exist an infinite number of equivalent sets.) 

Previously it was implicitly assumed that the matrix elements of Z were kite. This 
is true if 

Z(F) = finite, Z(gk) = finite, k = 1, 2 ,..., iV. (A4) 

Conditions (A4) are necessary and sufficient for the above expansion. 
For the special case of a Fourier sum, in the interval (-7r/2, 7~/2), we have (for 

B, = 1/(2n) !) 

Z(cos(ZX), sin(mX)) = 0, 

Z(exp(iZX), exp(imX)) = r cash(Z), I= m, 

= 2 cosh((~m>lP) “‘“‘;~ LB 7 li2) (A5) 1 # ma 
m 

From these expressions the matrix elements for cos(mX) and sin(mX) may be calcu- 
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lated. For numerical reasons it is better to work with the ftmctions exp(ikX-1 k j/2), 
whose diagonal matrix elements are about 1, that is, to “normalize” the functions 
with respect to I. 

The &‘s, for the minimum of Eq. (A2) are 

f A,*V,, 
i=l 

646) 

(A7) 

APPENDIX B: CONVERGENCE FORMULAS 

In this Appendix we calculate the normalized error 77. 

We wish to construct a function t(x), which obeys t(&) = 0, i = 1, 2,..., iV, so that 
1 t”(&)l/l(t) will attain the maximum possible value. This is analogous to constructing 
a function uQ, obeying 

u(&) = 0, i = 1, 2,. . . , N; 24(X,) = M; I(U) = minimal. 032) 

Clearly, this function u(X) is the desired t(x). u(X) is the smooth interpolation 
function 

&f> = @3 = AJR(X, Xl)) + ; hjR(X, Xj), I(t) = X,M*, (B3) 
j=l 

where h, , h, are chosen to satisfy Eq. (B2). 
We use the notation 

%z = aX, , Xz); T,, = WG 9 &I; To, = WK, , X,). (B4) 

S-l = the inverse matrix of S whose elements are S,, . Then 

‘I = 1 t(&)12/~tt) = To, - 5 %&,lT,, . 
k.j-1 

(B5) 
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The normalized error for derivatives may be found in the same way by requiring in 
Eq. (B2) that zP(X,) = M. Using the above notation with 

we obtain 
T;, = (W/5XzaYE)Z?(X, Y)jx,y,xo, 

T&Y,,) = Max{t(z)(X,)/Z(t)} = T&, - 5 T&J,$Tjl,, . 037) 
k.j=l 

For the special case of periodic functions, with equally spaced points, the results 
may be simplified by diagonalizing S. 

R(X, Y) = E exp(ik(X - Y))/Z(k) = f exp(im(x - y)) T,(x - y), (BS) 
k=-m Wk=l 

where 

T,(X- Y) = c exp(ikN(X - Y))/Z(kN + m) and Z(m) = Z(exp(imX)). 
k=-co 

For equally spaced points, X. = j * 2r/N, 

Substituting into Eq. 

skj = i T,(O)exp(im(Xk - xj)). 
VP&=1 

W), 

(B9) 

If N is sufficiently large, T,(X) may be approximated by its two leading terms 

T,(x) = l/Z(m) + exp(-iNX’)/Z(m - N), 

where Z(m) is Z(exp (imx)). 
Substituting into (BlO), 

W 1) 

17(X,) N 5 4 sirP(NX,/2)/(Z(m) + Z(m - N)) 
m=1 

N sin;&y &l(l), 

rlz(x,) N 2 mzz + (m - N)2z - 2mz(m - N)Icos((N- m)X,,) 
??I=1 Z(m) + Z(m - NJ 

0312) 

N {(N;$)l)az O(1). (J313) 
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Now, if B, is chosen as B, = Dzn(an)!, then 

Z(m) N (l/a) exp[(mD)2/“] Cm> 0, 

so that Eqs. (B12) and (B13) become 

n(X,) N sin2(N&)O(l) exp[ -(ND/2)2/s], 

nz(Xo) 3! [(N/2) + 1]2z O(1) exp[-(ND/2)2/a]. 

(B14) 

0315) 

@W 

APPENDIX C: OTHER PROPERTIES OF THE SMOOTH NORM 

In this Appendix we investigate a few important mathematical properties of the 
smooth norm. 

(a) A sufficient condition for I(g, h) < co is I(g) < co and I(h) < co. 

Proof. 

Z( g, h) = t 1 B, I I b W(X) g’“‘*(X) dX. 
n-0 a 

We now compare the three sums, term by term. By Schwarz inequality, 

) 1” h(“)(X)gfn)*(X) dx 1 < Q Iab (I h’“‘(X)/2 + I g’n’(X)12) dX. 
a 

(Cl) 

G9 

Since all the I B,, I are positive, the same inequality holds for the complete sums 

I Zk, 4 I < BV(d + wa. (C3) 

(b) The matrix R, Rkz = (X, , X,) has only positive eigenvalues, where R(X, Y) 
is the generating function defined by 

so that 

w, r> = 2 gkwgk*mlz(gk), 
k=l 

(C4) 

For every set of numbers h, , h, ,..., hN a function u(x> can be defined by 

40 = 5 &RW, xj>, Z(u) = 5 XjXz*R(Xz , X,) > 0. (C6) 
j-1 Z.j=l 
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Because the gk(X) form a complete linearly independent set, u(X) is identically zero if 
and only if all hi are zero (assuming all Xj are different from each other) [I 11. 

To summarize, C AjAl*R(Xr , Xj) is positive and larger than zero for any set of 
unequal Xj and any set of Ai . That is, R(X, , Xi) has only positive eigenvalues and thus 
possesses an inverse. 

(c) The case of B,, + 0. 

All along the discussion we assumed that the norm is positive for every nonzero 
function. However, if B,, + 0, the function F(X) = constant has a zero norm. In 
such a case, F(X) should be approximated by 

W) = A + Z(X), Z(Z) = Minimum, (C7) 

which leads to 

Z(X) = t AjR’(X, Xj), 

j=l 

R’W, y> = C’ LTk(X> gk*( nmk). 
k 

633) 

The sum in Eq. (C8) is only over those gk that have a nonzero norm, i.e., the sum 
excludes the function gl(A’) = 1. It is easy to see that R’(X, Y) has only nonnegative 
eigenvalues. 

In practice, we do not calculate R’(X, Y) but rather R”(X, Y) defined by 

This R”(X, Y) is equivalent, up to a function with a zero norm, to R’(X, Y), and its 
use will not cause any further complications. The complete solution of the interpola- 
tion problem for F(X) is 

Ko = A + Z(X), Z(X) = 5 h,R”(X, A’,), Z(Z) = f w*(m 
j=l j=l 

(CW 

W,n> = ; W'(Xn , Xi> + -4 f Aj = 0 (WI = 1, 2,..., N). 
j-l 5-l 

The solution for A and A, is the same whether R”(X, Y) is used or R’(X, Y). 
Similarly, if the first few B, are set equal to zero for n < k, the solution is 

F(x) = A, + k&X + -‘* + &+dk-l + z(x), 
(Cl 1) 

Z(X) = f AjR”(X, Xj), Z(Z) = f WV,); 
j=l j-l 
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F-(X,) = 5 AjR”(Xm , Xj) + kg A~XZ, 5 hjXj’ = 0, 
j=l Z=O j=l 

m = 1, 2, 3,.. ., N, 1 = 0, 1, 2 )...) k - 1; (W 

where the solution for F(X), Z(X), I(Z), A, , Al is the same if a function of zero norm is 
added to R”(X, Y). 

R”K y> = B~-~+o B$o * * * @lo R(X, Y, B) + u(X) u*(Y), (C13) 

where u(X) is any function of X with a zero norm. 
The error bounds are given by Eqs. (16) and (19). If the number k of free parameters 

Al is less then the number of data points N, no function with zero norm can satisfy 
the conditions t(xi) = 0, i = 1, 2 ,..., N, and the normalized error 7 is bounded. 

(d) R(X, Y) is independent of the choice of the initial set gk(X). 

Suppose two sets of complete, independent, orthogonal (with respect to 1) functions 
are constructed, namely, gk(X) and hR(X) (k = 1, 2,..., co). The generating function 
R(X, Y) can be constructed from both of them, 

&7(X, y> = f gkw)gk*vMgk)~ 
k=l 

(C14) 

Rh(X, Y) = f hk(X) hk*m/mk). 
k=l 

Then, if all I(gk) and I&) are finite and nonzero, R,(X, Y) = R,(X, Y). 

Proof. Since both g, and h, are complete sets, gk(X) can be expanded in terms of 
hk(X), and vice versa. Since I(g, h) is an inner product, then 

gkcx> = f BzkhzGl 
Z=l 

&” = Z(hz 7 gd/z@z), 

(C15) 

h,(X) = f Ckzgk(Xh 
k=l 

ckz = hk , h,Mgk). 

For every point X1 within the interval of the definition of I, 

m7(Xl, X) - &(X1 9 Xl> 

= gl &(x1) gk*(xl)/T(8k) + ,c: hz(X,) hz*WM@z) 

m 

- ,:I 

(&(X1) h,*(X,) I(gk , hz) + gk*cxd hzWd Nzz 3 Sk)> . 

WJ I(gk) 

(Cl@ 
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By use of Eq. (C15), the last term is equal to minus the sum of the first two terms, 

4MX1, x> - &(X1, Xl> = 0. (C17) 

By definition, Z(Z) = 0 if and only if 2 = 0, so that 

47(X, x> = &(X1 3 m. ((38) 

(e) Extension of the interpolation problem to include derivatives. 

If a few values of the derivatives (or integrals) are given, these values constitute a 
few more constraints on the interpolation function Z(X). With the use of Lagrange 
multipliers, Eq. (9) transforms into 

(a/&4,) \Z(Z) - ; hj*z(xj) + z s,*z(yx,)~ = 0, k = 1, 2 ,..., co, 
t j=l Z=l I 

with the solution 

Z(X) = f VqX, Xj) + f wn/~yn> w, y> I&a, 3 
i=l Z=l 

Z(Z) = f xj*F(xj) + f s,*Pyx,), 
j=l Z=l 

where the hi and 6, are the solutions of the set of linear equations 

ww 

(C20) 

(C21) 

2(X,) = F(X,), j = 1, 2 ,..., N, Z’“‘(X1) = F’“‘(Xi), I = 1, 2 )...) M. 
(CW 

If other linear conditions are required, such as F(X,) - F(Y,) = C, , where the 
value ofF(X,) itself is unknown, then a term +{Z(Xk) - Z( Y,)} is added to Eq. (C19). 

APPENDIX D 

In this Appendix we bring the integration and differentiation constants (Eqs. (49), 
(W 

Integration Constants 

s” F(X) dX N J+l Z(X) dX = f CjF(Xj). 
. 

-1 -1 i=l 

Tables DI and DII list only half of the Cj . The others are given by C, = CN-,+l . 
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TABLE DI 

X, = (2j - N - l)/(N - 1) 

i G 

N=4 N=5 

0.262121 

0.737879 

N=8 N=9 N= 10 

0.100388449 

0.358558833 

0.239720536 

0.301332182 

0.084493726 0.0748754610 

0.328657041 0.2914975144 

0.176615007 0.1638841536 

0.318012606 0.2609074380 

0.184443239 0.2088354330 

0.182593 

0.613446 

0.407922 

N=6 N=7 

0.1476243 0.1171661 

0.4773697 0.4217965 

0.3750059 0.2615862 

0.3989024 

TABLE DII 

X, = (2j - N - 1)/N 

N=4 N=5 

0.528384 

0.471616 

N=8 N=9 N= 10 

0.276126669 0.250630910 

0.196245974 0.151743929 

0.293803032 0.310498988 

0.233824325 0.314973064 

0.2261431637 

0.1367575766 

0.2702472642 

0.1480542943 

0.2187977012 

0.433106 

0.335640 

0.462507 

N=6 N=7 

0.3598854 0.3152251 

0.2896028 0.2212552 

0.3505118 0.3547280 

0.2175834 

Di’rentiation Constants 

d/dX)F(X) N $ C,{F(X + X,) - F(X - AT,)}. 
j=l 
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TABLE DIII 

x, G 

N=l N=2 N=3 N=4 N=5 

0.5 +1 +1.23082 1.261652 +1.263635 + 1.264193 

1.5 0 -0.07694 -0.117668 -0.127978 -0.130857 

2.5 0 0 +0.018270 +0.032008 +0.037909 

3.5 0 0 0 -0.005734 -0.011304 

4.5 0 0 0 0 $0.001996 

TABLE DIV 

X, Cj 

N=l N=2 N=3 N=4 

1 0.5 +0.77236 +0.920974 +0.920542 

2 0 -0.13618 -0.272393 -0.345968 

3 0 0 +0.054604 $0.122731 

4 0 0 0 -0.024200 
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(RI 1.1) 

N 

c higr*(Xj) 2 0, k = 1, 2 ,... co. 
J-1 

(R11.2) 

We now define a function Y(X,) = A,* which is arbitrary at X # X, , and let bt he its expansion 
coefficients, so that 

Y(X) = c b&*(X). (Rl 1.3) 
k 

By multiplying Eq. (RI 1.2) by bk and summing over k we obtain 

,=I N N N 

1 C bdjg**(Xj) = 1 AjY(Xj) = 1 Xjhj*. (R11.4) 
*-* 1-I j-1 j-1 
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